Eksponensiële bewegende gemiddelde - EMO laai die speler. Afbreek van Eksponensiële bewegende gemiddelde - EMO Die 12- en 26-dag EMA is die gewildste kort termyn gemiddeldes, en hulle word gebruik om aanwysers soos die bewegende gemiddelde konvergensie divergensie (MACD) en die persentasie prys ossillator (PPO) te skep. In die algemeen, is die 50- en 200-dag EMA as seine van 'n lang termyn tendense. Handelaars wat tegniese ontleding diens vind bewegende gemiddeldes baie nuttig en insiggewend wanneer dit korrek toegepas word, maar skep chaos wanneer onbehoorlik gebruik of verkeerd verstaan. Al die bewegende gemiddeldes wat algemeen gebruik word in tegniese ontleding is, volgens hulle aard, sloerende aanwysers. Gevolglik moet die afleidings wat op die toepassing van 'n bewegende gemiddelde op 'n bepaalde mark grafiek wees om 'n mark skuif bevestig of om sy krag te toon. Heel dikwels is, teen die tyd dat 'n bewegende gemiddelde aanwyser lyn het 'n verandering aan 'n beduidende stap in die mark weerspieël gemaak het die optimale punt van toegang tot die mark reeds geslaag. 'N EMO nie dien om hierdie dilemma te verlig tot 'n mate. Omdat die EMO berekening plaas meer gewig op die jongste data, dit drukkies die prys aksie 'n bietjie stywer en reageer dus vinniger. Dit is wenslik wanneer 'n EMO word gebruik om 'n handels inskrywing sein herlei. Interpretasie van die EMO Soos alle bewegende gemiddelde aanwysers, hulle is baie meer geskik vir trending markte. Wanneer die mark is in 'n sterk en volgehoue uptrend. die EMO aanwyser lyn sal ook 'n uptrend en andersom vir 'n down tendens toon. A waaksaam handelaar sal nie net aandag te gee aan die rigting van die EMO lyn, maar ook die verhouding van die tempo van verandering van die een bar na die volgende. Byvoorbeeld, as die prys aksie van 'n sterk uptrend begin plat en reverse, van die EMAS tempo van verandering van die een bar na die volgende sal begin om te verminder tot tyd en wyl die aanwyser lyn plat en die tempo van verandering is nul. As gevolg van die sloerende uitwerking, deur hierdie punt, of selfs 'n paar bars voor, die prys aksie moet reeds omgekeer. Dit volg dus dat die waarneming van 'n konsekwente verminderde in die tempo van verandering van die EMO kon self gebruik word as 'n aanduiding dat die dilemma wat veroorsaak word deur die sloerende uitwerking van bewegende gemiddeldes verder kon teen te werk. Algemene gebruike van die EMO EMA word algemeen gebruik word in samewerking met ander aanwysers aan beduidende mark beweeg bevestig en om hul geldigheid te meet. Vir handelaars wat intraday en vinnig bewegende markte handel te dryf, die EMO is meer van toepassing. Dikwels handelaars gebruik EMA om 'n handels vooroordeel bepaal. Byvoorbeeld, as 'n EMO op 'n daaglikse grafiek toon 'n sterk opwaartse neiging, kan 'n intraday handelaars strategie wees om net handel van die lang kant op 'n intraday chart. Trading met bewegende gemiddeldes Een van die eerste aanduidings dat handelaars dikwels sal leer is die bewegende gemiddelde. Bewegende gemiddeldes is maklik om te bereken, maklik om te verstaan, en kan 'n hele paar verskillende utilities om die handelaar verskaf. In hierdie artikel, wersquoll praat oor die meer gewilde gebruike van hierdie veelsydige aanwyser, 'n paar van die meer algemeen gekyk na bewegende gemiddelde insette, en hoe handelaars hulle meestal toe te pas. Die beginsels van die bewegende gemiddelde Op sy wortel, 'n bewegende gemiddelde is eenvoudig die laaste X periode rsquo s prys gedeel deur die aantal periodes. Dit gee ons die lsquoaveragersquo prys die afgelope x tydperke. En dit sal uitgedruk word op die grafiek, baie soos die prys self. Geskep met Marketscope / Trading Station II As ons kyk na die prys bewegings, uitgedruk as 'n gemiddelde kan 'n hele paar duidelike voordele aan te bied primêre waarvan is dat die groot verskille uit kandelaar tot kandelaar is gemoduleerde deur te kyk na die gemiddelde prys van die laaste X tydperke. Handelaars het dikwels die vraag of nie prys is te hoog of te laag uitvoering maak, maar deur bloot te kyk na die gemiddelde prys vir hierdie kandelaar (met inagneming van die pryse in die afgelope X periodes), die handelaar kry die voordeel van outomaties sien die groter prentjie. Baie handelaars sal die indicatorrsquos gebruik veel verder te voer hipotetiseer dat wanneer die prys sny met 'n bewegende gemiddelde, 'n ding of die ander kan gebeur. Of miskien handelaars sal dink dat as twee bewegende gemiddeldes crossover, 'n paar spesiale geleentheid mag plaasvind. Wersquoll hierdie hieronder bespreek, maar vir nou uitvoering maak net weet dat die mees basiese gebruik van 'n bewegende gemiddelde is om moduleer prys probeer om vrae wat mag pop-up van die wisselvallige prys swaai wat kan plaasvind vanaf kers om kers uit te wis. Algemeen gebruik Bewegende Gemiddeldes Daar is 'n hele paar verskillende geure en flairs van bewegende gemiddeldes. Sommige het probeer om uit handelaar noodsaaklikheid ander tot stand gekom het uit handelaars eenvoudig probeer om 'n beter lsquobuild wheel. rsquo Die mees basiese bewegende gemiddelde is die Eenvoudige bewegende gemiddelde, wat ons verduidelik die berekening van bogenoemde. Handelaars sal gebruik 'n hele paar verskillende insette periodes vir bewegende gemiddelde vir 'n aantal verskillende redes. Die mees algemene bewegende gemiddelde is die 200 tydperk MA, en baie handelaars graag hierdie toepassing is op die daaglikse grafiek. Dit is van die oortuiging dat die meeste handel instellings banke, verskansingsfondse, F OREX handelaars, ens kyk hierdie aanwyser. Of dit waar is of nie kan ongelukkig nie gestaaf word, aangesien die meeste van hierdie instellings hou hul handel stelsels en praktyke eiendom. Maar 'n mens kyk na hierdie aanwyser op enige van die groot munt formate kan skynbaar bewys sy waarde. Baie handelaars ook graag die 50 tydperk rsquos bewegende gemiddelde kyk: die grafiek sal onder 'n paar van die interessante prys aksie wat kan plaasvind met die 200 tydperk bewegende gemiddelde van toepassing op 'n daaglikse skedule na vore te bring. Dit is vermoedelik 'n vinniger bewegende gemiddelde sedert minder insette periodes gebruik word, en die primêre effek is dat dit bewegende gemiddelde gevoelig vir meer nabye toekoms prysbewegings sal wees. Die prentjie hieronder wys hoe die tydperk se 50 bewegende gemiddelde stapels tot die 200: Prys interaksie met die 200 tydperk MA geskep met Marketscope / Trading stasie Ander algemeen gebruik insette periodes is 10, 20 en 100 instellings. Sommige handelaars gebruik wat algemeen nommers van die Fibonacci-ry as bewegende gemiddelde insette, soos in my scalping strategie in die artikel Korttermyn Momentum scalping in die forex mark. Eksponensiële Moving gemiddeldes uit van handelaar noodsaaklikheid om nouer volg nabye toekoms prysbewegings, soveel handelaars voel onlangse prysveranderings meer relevant as ouer prys variasies te wees, die eksponensiële bewegende gemiddelde sal hoër belang op prys waardes meer onlangs geregistreer plaas. Sedert meer onlangse pryse swaarder geweeg as ouer prys swaai, die aanwyser raak meer aanpasbaar by die huidige prys omgewing. In die onderstaande prentjie, wersquoll vergelyk die tydperk 200 bewegende gemiddeldes so eenvoudig en Eksponensiële MArsquos. 'N Vergelyking van Simple (in rooi) en Eksponensiële (in groen) 200 tydperk bewegende gemiddeldes die identifisering van tendense met bewegende gemiddeldes Sedert bewegende gemiddeldes gee die luukse van wat ons prys met inagneming van die laaste X periodes, het ons die luukse om te kan waarneem neigings wat ons in staat kan wees om voordeel te trek uit. Nêrens is dit meer algemeen as by die gebruik van hierdie aanwyser om tendense te definieer, wat dikwels die mees algemene toepassing van die bewegende gemiddelde. As die prys aksie is konsekwent woonagtig bo sy bewegende gemiddelde, met die bewegende gemiddelde onvermydelik trek hoër op hierdie stygende pryse uitvoering maak handelaars besin kan kyk na die grafiek te wees wat 'n uptrend. En presies die teenoorgestelde is waar vir downtrends. Bewegende gemiddeldes as ondersteuning en weerstand Soos ons in staat was om te sien in die foto hierbo van die 200 tydperk bewegende gemiddelde, kan eienaardige gebeurtenisse plaasvind wanneer die prys in wisselwerking met een van hierdie lyne. As sodanig, baie handelaars sal kyk na bewegende gemiddelde kruisings as geleenthede om up-tendense goedkoop koop, of om af-tendense te verkoop wanneer die prys is vermoedelik duur te wees. Die gedagte is dat terwyl 'n uptrend neem 'n breek deur die verskuiwing van 'n laer, na sy gemiddelde, handelaars kan spring in, terwyl die prys is relatief laag. Die foto hieronder illustreer verder: Moving Gemiddelde CROSSOVER Sommige handelaars sal die nut van die bewegende gemiddelde 'n stap verder te neem, hipotetiseer dat wanneer twee van hierdie lyne kruis, iets kan gebeur. Die lsquoGolden Crossover, rsquo dikwels in die finansiële pers bedoel is eenvoudig die tydperk se 50 bewegende gemiddelde kruising die 200 tydperk MA. Wanneer dit gebeur, sommige glo dat die prys sal voortgaan in die rigting van die crossover. Die Golden Crossover geskep met Marketscope / Trading Station II Sommige handelaars voel bewegende gemiddelde CROSSOVER kan oneffektief wees as hulle dikwels kan produseer groot lag 'n tradersrsquo ontleding, dwingende handelaars te koop na 'n uptrend is goed gevestig, of om te verkoop wanneer 'n verslechtering neiging kan wees einde se kant toe. --- Geskryf deur James Stanley Jy kan James op Twitter JStanleyFX volg. Om aan te sluit James Stanleyrsquos verspreiding lys, kliek asseblief hier. Moving gemiddeldes - Eenvoudige en Eksponensiële Bewegende Gemiddeldes - Eenvoudige en Eksponensiële Inleiding bewegende gemiddeldes glad die prys data om 'n tendens volgende aanwyser vorm. Hulle het nie die prys rigting voorspel nie, maar eerder die huidige rigting met 'n lag te definieer. Bewegende gemiddeldes lag omdat hulle op grond van vorige pryse. Ten spyte hiervan lag, bewegende gemiddeldes te help gladde prys aksie en filter die geraas. Hulle vorm ook die boustene vir baie ander tegniese aanwysers en overlays, soos Bollinger Bands. MACD en die McClellan Ossillator. Die twee mees populêre vorme van bewegende gemiddeldes is die Eenvoudige bewegende gemiddelde (SMA) en die eksponensiële bewegende gemiddelde (EMA). Hierdie bewegende gemiddeldes gebruik kan word om die rigting van die tendens te identifiseer of definieer potensiaal ondersteuning en weerstand vlakke. Here039s n grafiek met beide 'n SMA en 'n EMO daarop: Eenvoudige bewegende gemiddelde Berekening 'n Eenvoudige bewegende gemiddelde is wat gevorm word deur die berekening van die gemiddelde prys van 'n sekuriteit oor 'n spesifieke aantal periodes. Die meeste bewegende gemiddeldes is gebaseer op sluitingstyd pryse. 'N 5-dag eenvoudig bewegende gemiddelde is die vyf dag som van die sluiting pryse gedeel deur vyf. Soos die naam aandui, 'n bewegende gemiddelde is 'n gemiddelde wat beweeg. Ou data laat val as nuwe data kom beskikbaar. Dit veroorsaak dat die gemiddelde om te beweeg langs die tydskaal. Hieronder is 'n voorbeeld van 'n 5-daagse bewegende gemiddelde ontwikkel met verloop van drie dae. Die eerste dag van die bewegende gemiddelde dek net die laaste vyf dae. Die tweede dag van die bewegende gemiddelde daal die eerste data punt (11) en voeg die nuwe data punt (16). Die derde dag van die bewegende gemiddelde voort deur die val van die eerste data punt (12) en die toevoeging van die nuwe data punt (17). In die voorbeeld hierbo, pryse geleidelik verhoog 11-17 oor 'n totaal van sewe dae. Let daarop dat die bewegende gemiddelde styg ook 13-15 oor 'n driedaagse berekening tydperk. Let ook op dat elke bewegende gemiddelde waarde is net onder die laaste prys. Byvoorbeeld, die bewegende gemiddelde vir die eerste dag is gelyk aan 13 en die laaste prys is 15. Pryse die vorige vier dae laer was en dit veroorsaak dat die bewegende gemiddelde te lag. Eksponensiële bewegende gemiddelde Berekening eksponensiële bewegende gemiddeldes te verminder die lag deur die toepassing van meer gewig aan onlangse pryse. Die gewig van toepassing op die mees onlangse prys hang af van die aantal periodes in die bewegende gemiddelde. Daar is drie stappe om die berekening van 'n eksponensiële bewegende gemiddelde. Eerstens, bereken die eenvoudige bewegende gemiddelde. 'N eksponensiële bewegende gemiddelde (EMA) moet iewers begin so 'n eenvoudige bewegende gemiddelde word gebruik as die vorige period039s EMO in die eerste berekening. Tweede, bereken die gewig vermenigvuldiger. Derde, bereken die eksponensiële bewegende gemiddelde. Die onderstaande formule is vir 'n 10-dag EMO. 'N 10-tydperk eksponensiële bewegende gemiddelde van toepassing 'n 18,18 gewig na die mees onlangse prys. 'N 10-tydperk EMO kan ook 'n 18,18 EMO genoem. A 20-tydperk EMO geld 'n 9,52 weeg om die mees onlangse prys (2 / (201) 0,0952). Let daarop dat die gewig vir die korter tydperk is meer as die gewig vir die langer tydperk. Trouens, die gewig daal met die helfte elke keer as die bewegende gemiddelde tydperk verdubbel. As jy wil ons 'n spesifieke persentasie vir 'n EMO, kan jy hierdie formule gebruik om dit te omskep in tydperke en gee dan daardie waarde as die parameter EMA039s: Hier is 'n spreadsheet voorbeeld van 'n 10-dag eenvoudig bewegende gemiddelde en 'n 10- dag eksponensiële bewegende gemiddelde vir Intel. Eenvoudige bewegende gemiddeldes is reguit vorentoe en verg min verduideliking. Die 10-dag gemiddeld net beweeg as nuwe pryse beskikbaar raak en ou pryse af te laai. Die eksponensiële bewegende gemiddelde begin met die eenvoudige bewegende gemiddelde waarde (22,22) in die eerste berekening. Na die eerste berekening, die normale formule oorneem. Omdat 'n EMO begin met 'n eenvoudige bewegende gemiddelde, sal sy werklike waarde nie besef tot 20 of so tydperke later. Met ander woorde, kan die waarde van die Excel spreadsheet verskil van die term waarde as gevolg van die kort tydperk kyk terug. Hierdie sigblad gaan net terug 30 periodes, wat beteken dat die invloed van die eenvoudige bewegende gemiddelde het 20 periodes om te ontbind het. StockCharts gaan terug ten minste 250-tydperke (tipies veel verder) vir sy berekeninge sodat die gevolge van die eenvoudige bewegende gemiddelde in die eerste berekening volledig verkwis. Die sloerfaktor Hoe langer die bewegende gemiddelde, hoe meer die lag. 'N 10-dag eksponensiële bewegende gemiddelde pryse sal baie nou omhels en draai kort ná pryse draai. Kort bewegende gemiddeldes is soos spoed bote - ratse en vinnige te verander. In teenstelling hiermee het 'n 100-daagse bewegende gemiddelde bevat baie afgelope data wat dit stadiger. Meer bewegende gemiddeldes is soos see tenkwaens - traag en stadig om te verander. Dit neem 'n groter en meer prysbewegings vir 'n 100-daagse bewegende gemiddelde kursus te verander. bo die grafiek toon die SampP 500 ETF met 'n 10-dag EMO nou na aanleiding van pryse en 'n 100-dag SMA maal hoër. Selfs met die Januarie-Februarie afname, die 100-dag SMA gehou deur die loop en nie draai. Die 50-dag SMA pas iewers tussen die 10 en 100 dae bewegende gemiddeldes wanneer dit kom by die lag faktor. Eenvoudige vs Eksponensiële Bewegende Gemiddeldes Hoewel daar duidelike verskille tussen eenvoudige bewegende gemiddeldes en eksponensiële bewegende gemiddeldes, een is nie noodwendig beter as die ander. Eksponensiële bewegende gemiddeldes minder lag en is dus meer sensitief vir onlangse pryse - en onlangse prysveranderings. Eksponensiële bewegende gemiddeldes sal draai voor eenvoudige bewegende gemiddeldes. Eenvoudige bewegende gemiddeldes, aan die ander kant, verteenwoordig 'n ware gemiddelde van die pryse vir die hele tydperk. As sodanig, kan eenvoudig bewegende gemiddeldes beter geskik wees om ondersteuning of weerstand vlakke te identifiseer. Bewegende gemiddelde voorkeur hang af van doelwitte, analitiese styl en tydhorison. Rasionele agente moet eksperimenteer met beide tipes bewegende gemiddeldes, asook verskillende tydsraamwerke om die beste passing te vind. Die onderstaande grafiek toon IBM met die 50-dag SMA in rooi en die 50-dag EMO in groen. Beide 'n hoogtepunt bereik in die einde van Januarie, maar die daling in die EMO was skerper as die afname in die SMA. Die EMO opgedaag het in die middel van Februarie, maar die SMA voortgegaan laer tot aan die einde van Maart. Let daarop dat die SMA opgedaag het meer as 'n maand nadat die EMO. Lengtes en tydsraamwerke Die lengte van die bewegende gemiddelde is afhanklik van die analitiese doelwitte. Kort bewegende gemiddeldes (20/05 periodes) is die beste geskik vir tendense en handel kort termyn. Rasionele agente belangstel in medium termyn tendense sou kies vir langer bewegende gemiddeldes wat 20-60 periodes kan verleng. Langtermyn-beleggers sal verkies bewegende gemiddeldes met 100 of meer periodes. Sommige bewegende gemiddelde lengtes is meer gewild as ander. Die 200-daagse bewegende gemiddelde is miskien die mees populêre. As gevolg van sy lengte, dit is duidelik 'n langtermyn-bewegende gemiddelde. Volgende, die 50-dae - bewegende gemiddelde is baie gewild vir die medium termyn tendens. Baie rasionele agente gebruik die 50-dag en 200-dae - bewegende gemiddeldes saam. Korttermyn, 'n 10-dae bewegende gemiddelde was baie gewild in die verlede, want dit was maklik om te bereken. Een van die nommers bygevoeg eenvoudig en verskuif die desimale punt. Tendens Identifikasie Dieselfde seine gegenereer kan word met behulp van eenvoudige of eksponensiële bewegende gemiddeldes. Soos hierbo aangedui, die voorkeur hang af van elke individu. Hierdie voorbeelde sal onder beide eenvoudige en eksponensiële bewegende gemiddeldes gebruik. Die term bewegende gemiddelde is van toepassing op beide eenvoudige en eksponensiële bewegende gemiddeldes. Die rigting van die bewegende gemiddelde dra belangrike inligting oor pryse. 'N stygende bewegende gemiddelde wys dat pryse oor die algemeen is aan die toeneem. A val bewegende gemiddelde dui daarop dat pryse gemiddeld val. 'N stygende langtermyn bewegende gemiddelde weerspieël 'n langtermyn - uptrend. A val langtermyn bewegende gemiddelde weerspieël 'n langtermyn - verslechtering neiging. bo die grafiek toon 3M (MMM) met 'n 150-dag eksponensiële bewegende gemiddelde. Hierdie voorbeeld toon hoe goed bewegende gemiddeldes werk wanneer die neiging is sterk. Die 150-dag EMO van die hand gewys in November 2007 en weer in Januarie 2008. Let daarop dat dit 'n 15 weier om die rigting van hierdie bewegende gemiddelde om te keer. Hierdie nalopend aanwysers identifiseer tendens terugskrywings as hulle voorkom (op sy beste) of nadat hulle (in die ergste geval) voorkom. MMM voortgegaan laer in Maart 2009 en daarna gestyg 40-50. Let daarop dat die 150-dag EMO nie opgedaag het nie eers na hierdie oplewing. Sodra dit gedoen het, maar MMM voortgegaan hoër die volgende 12 maande. Bewegende gemiddeldes werk briljant in sterk tendense. Double CROSSOVER twee bewegende gemiddeldes kan saam gebruik word om crossover seine op te wek. In tegniese ontleding van die finansiële markte. John Murphy noem dit die dubbele crossover metode. Double CROSSOVER behels een relatief kort bewegende gemiddelde en een relatiewe lang bewegende gemiddelde. Soos met al die bewegende gemiddeldes, die algemene lengte van die bewegende gemiddelde definieer die tydraamwerk vir die stelsel. 'N Stelsel met behulp van 'n 5-dag EMO en 35-dag EMO sal geag kort termyn. 'N Stelsel met behulp van 'n 50-dag SMA en 200-dag SMA sal geag medium termyn, miskien selfs 'n lang termyn. N bullish crossover vind plaas wanneer die korter bewegende gemiddelde kruise bo die meer bewegende gemiddelde. Dit is ook bekend as 'n goue kruis. N lomp crossover vind plaas wanneer die korter bewegende gemiddelde kruise onder die meer bewegende gemiddelde. Dit staan bekend as 'n dooie kruis. Bewegende gemiddelde CROSSOVER produseer relatief laat seine. Na alles, die stelsel werk twee sloerende aanwysers. Hoe langer die bewegende gemiddelde periodes, hoe groter is die lag in die seine. Hierdie seine werk groot wanneer 'n goeie tendens vat. Dit sal egter 'n bewegende gemiddelde crossover stelsel baie whipsaws produseer in die afwesigheid van 'n sterk tendens. Daar is ook 'n driedubbele crossover metode wat drie bewegende gemiddeldes behels. Weereens, is 'n sein gegenereer wanneer die kortste bewegende gemiddelde kruisies die twee langer bewegende gemiddeldes. 'N Eenvoudige trippel crossover stelsel kan 5-dag, 10-dag en 20-dae - bewegende gemiddeldes te betrek. bo die grafiek toon Home Depot (HD) met 'n 10-dag EMO (groen stippellyn) en 50-dag EMO (rooi lyn). Die swart lyn is die daaglikse naby. Met behulp van 'n bewegende gemiddelde crossover gevolg sou gehad het drie whipsaws voor 'n goeie handel vang. Die 10-dag EMO gebreek onder die 50-dag EMO die einde van Oktober (1), maar dit het nie lank as die 10-dag verhuis terug bo in die middel van November (2). Dit kruis duur langer, maar die volgende lomp crossover in Januarie (3) het plaasgevind naby die einde van November prysvlakke, wat lei tot 'n ander geheel verslaan. Dit lomp kruis het nie lank geduur as die 10-dag EMO terug bo die 50-dag 'n paar dae later (4) verskuif. Na drie slegte seine, die vierde sein voorafskaduwing n sterk beweeg as die voorraad oor 20. gevorderde Daar is twee wegneemetes hier. In die eerste plek CROSSOVER is geneig om geheel verslaan. 'N Prys of tyd filter toegepas kan word om te voorkom dat whipsaws. Handelaars kan die crossover vereis om 3 dae duur voordat waarnemende of vereis dat die 10-dag EMO hierbo beweeg / onder die 50-dag EMO deur 'n sekere bedrag voor waarnemende. In die tweede plek kan MACD gebruik word om hierdie CROSSOVER identifiseer en te kwantifiseer. MACD (10,50,1) sal 'n lyn wat die verskil tussen die twee eksponensiële bewegende gemiddeldes te wys. MACD draai positiewe tydens 'n goue kruis en negatiewe tydens 'n dooie kruis. Die persentasie Prys ossillator (PPO) kan op dieselfde manier gebruik word om persentasie verskille te wys. Let daarop dat die MACD en die PPO is gebaseer op eksponensiële bewegende gemiddeldes en sal nie ooreen met eenvoudige bewegende gemiddeldes. Hierdie grafiek toon Oracle (ORCL) met die 50-dag EMO, 200-dag EMO en MACD (50,200,1). Daar was vier bewegende gemiddelde CROSSOVER oor 'n tydperk 2 1/2 jaar. Die eerste drie gelei tot whipsaws of slegte ambagte. A opgedoen tendens begin met die vierde crossover as ORCL gevorder tot die middel van die 20s. Weereens, bewegende gemiddelde CROSSOVER werk groot wanneer die neiging is sterk, maar produseer verliese in die afwesigheid van 'n tendens. Prys CROSSOVER bewegende gemiddeldes kan ook gebruik word om seine met 'n eenvoudige prys CROSSOVER genereer. N bullish sein gegenereer wanneer pryse beweeg bo die bewegende gemiddelde. N lomp sein gegenereer wanneer pryse beweeg onder die bewegende gemiddelde. Prys CROSSOVER kan gekombineer word om handel te dryf in die groter tendens. Hoe langer bewegende gemiddelde gee die toon aan vir die groter tendens en die korter bewegende gemiddelde word gebruik om die seine te genereer. 'N Mens sou kyk vir bullish prys kruise net vir pryse is reeds bo die meer bewegende gemiddelde. Dit sou wees die handel in harmonie met die groter tendens. Byvoorbeeld, as die prys is hoër as die 200-daagse bewegende gemiddelde, rasionele agente sal net fokus op seine wanneer prysbewegings bo die 50-dae - bewegende gemiddelde. Dit is duidelik dat, sou 'n skuif onder die 50-dae - bewegende gemiddelde so 'n sein voorafgaan, maar so lomp kruise sou word geïgnoreer omdat die groter tendens is up. N lomp kruis sou net dui op 'n nadeel binne 'n groter uptrend. 'N kruis terug bo die 50-dae - bewegende gemiddelde sou 'n opswaai in pryse en voortsetting van die groter uptrend sein. Die volgende grafiek toon Emerson Electric (EMR) met die 50-dag EMO en 200-dag EMO. Die voorraad bo verskuif en bo die 200-daagse bewegende gemiddelde gehou in Augustus. Daar was dips onder die 50-dag EMO vroeg in November en weer vroeg in Februarie. Pryse het vinnig terug bo die 50-dag EMO te lomp seine (groen pyle) voorsien in harmonie met die groter uptrend. MACD (1,50,1) word in die aanwyser venster te prys kruise bo of onder die 50-dag EMO bevestig. Die 1-dag EMO is gelyk aan die sluitingsprys. MACD (1,50,1) is positief wanneer die naby is bo die 50-dag EMO en negatiewe wanneer die einde is onder die 50-dag EMO. Ondersteuning en weerstand bewegende gemiddeldes kan ook dien as ondersteuning in 'n uptrend en weerstand in 'n verslechtering neiging. 'N kort termyn uptrend kan ondersteuning naby die 20-dag eenvoudig bewegende gemiddelde, wat ook gebruik word in Bollinger Bands vind. 'N langtermyn-uptrend kan ondersteuning naby die 200-dag eenvoudig bewegende gemiddelde, wat is die mees gewilde langtermyn bewegende gemiddelde vind. As Trouens, die 200-daagse bewegende gemiddelde ondersteuning of weerstand bloot omdat dit so algemeen gebruik word aan te bied. Dit is amper soos 'n self-fulfilling prophecy. bo die grafiek toon die NY Saamgestelde met die 200-dag eenvoudig bewegende gemiddelde van middel 2004 tot aan die einde van 2008. Die 200-dag voorsien ondersteuning talle kere tydens die vooraf. Sodra die tendens omgekeer met 'n dubbele top ondersteuning breek, die 200-daagse bewegende gemiddelde opgetree as weerstand rondom 9500. Moenie verwag presiese ondersteuning en weerstand vlakke van bewegende gemiddeldes, veral langer bewegende gemiddeldes. Markte word gedryf deur emosie, wat hulle vatbaar vir overschrijdingen maak. In plaas van presiese vlakke, kan bewegende gemiddeldes gebruik word om ondersteuning of weerstand sones identifiseer. Gevolgtrekkings Die voordele van die gebruik bewegende gemiddeldes moet opgeweeg word teen die nadele. Bewegende gemiddeldes is tendens volgende, of nalopend, aanwysers wat altyd 'n stap agter sal wees. Dit is nie noodwendig 'n slegte ding al is. Na alles, die neiging is jou vriend en dit is die beste om handel te dryf in die rigting van die tendens. Bewegende gemiddeldes te verseker dat 'n handelaar is in ooreenstemming met die huidige tendens. Selfs al is die tendens is jou vriend, sekuriteite spandeer 'n groot deel van die tyd in die handel reekse, wat bewegende gemiddeldes ondoeltreffend maak. Sodra 'n tendens, sal bewegende gemiddeldes jy hou in nie, maar ook gee laat seine. Don039t verwag om te verkoop aan die bokant en koop aan die onderkant met behulp van bewegende gemiddeldes. Soos met die meeste tegniese ontleding gereedskap, moet bewegende gemiddeldes nie gebruik word op hul eie, maar in samewerking met ander aanvullende gereedskap. Rasionele agente kan gebruik bewegende gemiddeldes tot die algehele tendens definieer en gebruik dan RSI om oorkoop of oorverkoop vlakke te definieer. Toevoeging van bewegende gemiddeldes te StockCharts Charts bewegende gemiddeldes is beskikbaar as 'n prys oortrek funksie op die SharpCharts werkbank. Die gebruik van die Overlays aftrekkieslys, kan gebruikers kies óf 'n eenvoudige bewegende gemiddelde of 'n eksponensiële bewegende gemiddelde. Die eerste parameter word gebruik om die aantal tydperke stel. 'N opsionele parameter kan bygevoeg word om te spesifiseer watter prys veld moet gebruik word in die berekeninge - O vir die Ope, H vir die High, L vir die lae, en C vir die buurt. 'N Komma word gebruik om afsonderlike parameters. Nog 'n opsionele parameter kan bygevoeg word om die bewegende gemiddeldes te skuif na links (verlede) of regs (toekomstige). 'N negatiewe getal (-10) sou die bewegende gemiddelde skuif na links 10 periodes. 'N Positiewe nommer (10) sou die bewegende gemiddelde na regs skuif 10 periodes. Veelvuldige bewegende gemiddeldes kan oorgetrek die prys plot deur eenvoudig 'n ander oortrek lyn aan die werkbank. StockCharts lede kan die kleure en styl verander om te onderskei tussen verskeie bewegende gemiddeldes. Na die kies van 'n aanduiding, oop Advanced Options deur te kliek op die klein groen driehoek. Gevorderde Opsies kan ook gebruik word om 'n bewegende gemiddelde oortrek voeg tot ander tegniese aanwysers soos RSI, CCI, en Deel. Klik hier vir 'n lewendige grafiek met 'n paar verskillende bewegende gemiddeldes. Die gebruik van bewegende gemiddeldes met StockCharts skanderings Hier is 'n paar monster skanderings wat StockCharts lede kan gebruik om te soek na verskeie bewegende gemiddelde situasies: Bul bewegende gemiddelde Kruis: Dit skanderings lyk vir aandele met 'n stygende 150 dae eenvoudige bewegende gemiddelde en 'n lomp kruis van die 5 - Day EMO en 35-dag EMO. Die 150-daagse bewegende gemiddelde is stygende solank dit handel bo sy vlak vyf dae gelede. N bullish kruis vind plaas wanneer die 5-dag EMO bo die 35-dag EMO op bogemiddelde volume beweeg. Lomp bewegende gemiddelde Kruis: Dit skanderings lyk vir aandele met 'n dalende 150 dae eenvoudige bewegende gemiddelde en 'n lomp kruis van die 5-dag EMO en 35-dag EMO. Die 150-daagse bewegende gemiddelde val solank dit handel onder sy vlak vyf dae gelede. N lomp kruis vind plaas wanneer die 5-dag EMO beweeg onder die 35-dag EMO op bogemiddelde volume. Verdere Studie John Murphy039s boek het 'n hoofstuk gewy aan bewegende gemiddeldes en hul onderskeie gebruike. Murphy dek die voor - en nadele van bewegende gemiddeldes. Daarbenewens Murphy wys hoe bewegende gemiddeldes met Bollinger Bands en kanaal gebaseer handel stelsels. Tegniese ontleding van die finansiële markte John Murphy8.4 Moving gemiddelde modelle Eerder as om te gebruik afgelope waardes van die voorspelling veranderlike in 'n regressie, 'n bewegende gemiddelde model gebruik afgelope voorspelling foute in 'n regressie-agtige model. y c et theta e theta e kolle theta e, waar et is wit geraas. Ons noem dit 'n MA (Q) model. Natuurlik, ons het nie die waardes van et waarneem, so dit is nie regtig regressie in die gewone sin. Let daarop dat elke waarde van yt gesien kan word as 'n geweegde bewegende gemiddelde van die afgelope paar voorspel foute. Maar bewegende gemiddelde modelle moet nie verwar word met bewegende gemiddelde smoothing ons in Hoofstuk 6. 'n bewegende gemiddelde model bespreek word gebruik vir die voorspelling van toekomstige waardes, terwyl bewegende gemiddelde smoothing word gebruik vir die bepaling van die tendens-siklus van verlede waardes wees. Figuur 8.6: Twee voorbeelde van data uit bewegende gemiddelde modelle met verskillende parameters. Links: MA (1) met y t 20e t 0.8e t-1. Regs: MA (2) met y t e t-e t-1 0.8e t-2. In beide gevalle, is e t normaalverdeelde wit geraas met gemiddelde nul en variansie een. Figuur 8.6 toon 'n mate van data uit 'n MA (1) model en 'n MA (2) model. Die verandering van die parameters theta1, kolle, thetaq resultate in verskillende tyd reeks patrone. Soos met outoregressiemodelle, sal die afwyking van die term fout et net verander die skaal van die reeks, nie die patrone. Dit is moontlik om 'n stilstaande AR (p) model as 'n MA (infty) model skryf. Byvoorbeeld, met behulp van herhaalde vervanging, kan ons hierdie bewys vir 'n AR (1) model: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext einde verstande -1 Dit phi1 Dit 1, sal die waarde van phi1k kleiner te kry as k groter word. So uiteindelik kry ons yt et phi1 e phi12 e phi13 e cdots, 'n MA (infty) proses. Die omgekeerde gevolg het as ons 'n paar beperkinge op te lê op die MA parameters. Toe die MA-model is omkeerbaar genoem. Dit wil sê, dat ons 'n omkeerbare MA (Q) proses as 'n AR (infty) proses kan skryf. Omkeerbare modelle is nie net om ons in staat stel om van MA modelle om modelle AR. Hulle het ook 'n paar wiskundige eienskappe wat maak dit makliker om te gebruik in die praktyk. Die inverteerbaarheid beperkings is soortgelyk aan die stasionariteit beperkings. Vir 'n MA (1) model: -1lttheta1lt1. Vir 'n MA (2) model: -1lttheta2lt1, theta2theta1 GT-1, theta1 - theta2 Dit 1. Meer ingewikkelde voorwaardes hou vir qge3. Weereens, sal R sorg van hierdie beperkings te neem wanneer die beraming van die models. Moving gemiddelde en eksponensiële gladstryking modelle As 'n eerste stap in die beweging van buite gemiddelde modelle, ewekansige loop modelle, en lineêre tendens modelle, nonseasonal patrone en tendense kan geëkstrapoleer deur 'n moving - gemiddelde of glad model. Die basiese aanname agter gemiddelde en glad modelle is dat die tyd reeks is plaaslik stilstaande met 'n stadig wisselende gemiddelde. Vandaar, neem ons 'n bewegende (plaaslike) gemiddelde om die huidige waarde van die gemiddelde skat en dan gebruik dit as die voorspelling vir die nabye toekoms. Dit kan beskou word as 'n kompromie tussen die gemiddelde model en die ewekansige-stap-sonder-drif-model. Dieselfde strategie gebruik kan word om te skat en ekstrapoleer 'n plaaslike tendens. 'N bewegende gemiddelde is dikwels 'n quotsmoothedquot weergawe van die oorspronklike reeks, want kort termyn gemiddelde het die effek van gladstryking uit die knoppe in die oorspronklike reeks. Deur die aanpassing van die mate van gladstryking (die breedte van die bewegende gemiddelde), kan ons hoop om 'n soort van 'n optimale balans tussen die prestasie van die gemiddelde en die stogastiese wandeling modelle slaan. Die eenvoudigste soort gemiddelde model is die. Eenvoudige (ewe-geweeg) Moving Average: Die voorspelling vir die waarde van Y op tyd T1 wat gemaak word op tydstip t is gelyk aan die eenvoudige gemiddelde van die mees onlangse m waarnemings: (hier en elders sal ek die simbool 8220Y-hat8221 gebruik om op te staan vir 'n voorspelling van die tyd reeks Y gemaak op die vroegste moontlike voor datum deur 'n gegewe model.) Hierdie gemiddelde is gesentreer op tydperk t (M1) / 2, wat impliseer dat die skatting van die plaaslike gemiddelde sal neig om agter die werklike waarde van die plaaslike gemiddelde met sowat (M1) / 2 periodes. So, sê ons die gemiddelde ouderdom van die data in die eenvoudige bewegende gemiddelde is (M1) / 2 met betrekking tot die tydperk waarvoor die voorspelling is bereken: dit is die hoeveelheid tyd waarop voorspellings sal neig om agter draaipunte in die data. Byvoorbeeld, as jy gemiddeld die afgelope 5 waardes, sal die voorspellings wees oor 3 periodes laat in reaksie op draaipunte. Let daarop dat indien M1, die eenvoudige bewegende gemiddelde (SMA) model is soortgelyk aan die ewekansige loop model (sonder groei). As m is baie groot (vergelykbaar met die lengte van die skatting tydperk), die SMA model is gelykstaande aan die gemiddelde model. Soos met enige parameter van 'n voorspelling model, is dit gebruiklik om die waarde van k te pas ten einde die beste quotfitquot om die data, dit wil sê die kleinste voorspelling foute gemiddeld behaal. Hier is 'n voorbeeld van 'n reeks wat blykbaar ewekansige skommelinge toon om 'n stadig-wisselende gemiddelde. In die eerste plek kan probeer om dit aan te pas met 'n ewekansige loop model, wat gelykstaande is aan 'n eenvoudige bewegende gemiddelde van 1 kwartaal: Die ewekansige loop model reageer baie vinnig om veranderinge in die reeks, maar sodoende dit tel baie van die quotnoisequot in die data (die ewekansige skommelinge) asook die quotsignalquot (die plaaslike gemiddelde). As ons eerder probeer 'n eenvoudige bewegende gemiddelde van 5 terme, kry ons 'n gladder lyk stel voorspellings: Die 5 termyn eenvoudige bewegende gemiddelde opbrengste aansienlik kleiner foute as die ewekansige loop model in hierdie geval. Die gemiddelde ouderdom van die data in hierdie voorspelling is 3 ((51) / 2), sodat dit is geneig om agter draaipunte met sowat drie periodes. (Byvoorbeeld, blyk 'n afswaai het plaasgevind by tydperk 21, maar die voorspellings nie omdraai tot verskeie tydperke later.) Let daarop dat die langtermyn-voorspellings van die SMA model is 'n horisontale reguit lyn, net soos in die ewekansige loop model. So, die SMA model veronderstel dat daar geen neiging in die data. Maar, terwyl die voorspellings van die ewekansige loop model is eenvoudig gelyk aan die laaste waargenome waarde, die voorspellings van die SMA model is gelykstaande aan 'n geweegde gemiddelde van die afgelope waardes. Die vertroue perke bereken deur Stat Graphics vir die langtermyn-voorspellings van die eenvoudige bewegende gemiddelde nie groter as die vooruitskatting horison styg kry. Dit is natuurlik nie korrek Ongelukkig is daar geen onderliggende statistiese teorie wat ons vertel hoe die vertrouensintervalle behoort te brei vir hierdie model. Dit is egter nie te moeilik om empiriese ramings van die vertroue perke vir die langer-horison voorspellings te bereken. Byvoorbeeld, kan jy die opstel van 'n sigblad waarop die SMA model sal gebruik word om 2 stappe vooruit, 3 stappe vooruit, ens binne die historiese data monster voorspel. Jy kan dan bereken die monster standaardafwykings van die foute op elke voorspelling horison, en dan bou vertrouensintervalle vir langer termyn voorspellings deur optelling en aftrekking veelvoude van die toepaslike standaard afwyking. As ons probeer om 'n 9-termyn eenvoudige bewegende gemiddelde, kry ons selfs gladder voorspellings en meer van 'n sloerende uitwerking: Die gemiddelde ouderdom is nou 5 periodes ((91) / 2). As ons 'n 19-termyn bewegende gemiddelde te neem, die gemiddelde ouderdom toeneem tot 10: Let daarop dat, inderdaad, is die voorspellings nou agter draaipunte met sowat 10 periodes. Watter bedrag van smoothing is die beste vir hierdie reeks Hier is 'n tabel wat hulle dwaling statistieke vergelyk, ook met 'n 3-gemiddelde: Model C, die 5-termyn bewegende gemiddelde, lewer die laagste waarde van RMSE deur 'n klein marge oor die 3 - term en 9 termyn gemiddeldes, en hul ander statistieke is byna identies. So, onder modelle met 'n baie soortgelyke fout statistieke, kan ons kies of ons 'n bietjie meer responsiewe ingesteldheid of 'n bietjie meer gladheid in die voorspellings sou verkies. (Terug na bo.) Browns Eenvoudige Eksponensiële Smoothing (eksponensieel geweeg bewegende gemiddelde) Die eenvoudige bewegende gemiddelde model hierbo beskryf het die ongewenste eienskap dat dit behandel die laaste k Waarnemings ewe en heeltemal ignoreer al voorafgaande waarnemings. Intuïtief, moet afgelope data verdiskonteer in 'n meer geleidelike mode - byvoorbeeld, die mees onlangse waarneming moet 'n bietjie meer gewig kry as 2 mees onlangse, en die 2de mees onlangse moet 'n bietjie meer gewig as die 3 mees onlangse kry, en so aan. Die eenvoudige eksponensiële gladstryking (SES) model accomplishes hierdie. Laat 945 dui n quotsmoothing constantquot ( 'n getal tussen 0 en 1). Een manier om die model te skryf is om 'n reeks L dat die huidige vlak (dit wil sê die plaaslike gemiddelde waarde) van die reeks verteenwoordig as geraamde van data tot op hede te definieer. Die waarde van L op tydstip t is rekursief bereken uit sy eie vorige waarde soos volg: Dus, die huidige stryk waarde is 'n interpolasie tussen die vorige stryk waarde en die huidige waarneming, waar 945 kontroles die nabyheid van die geïnterpoleerde waarde tot die mees onlangse waarneming. Die voorspelling vir die volgende tydperk is eenvoudig die huidige stryk waarde: anders gestel ons kan die volgende voorspelling direk in terme van vorige voorspellings en vorige waarnemings uit te druk, in enige van die volgende ekwivalent weergawes. In die eerste weergawe, die voorspelling is 'n interpolasie tussen vorige skatting en vorige waarneming: In die tweede weergawe, is die volgende voorspelling verkry deur die aanpassing van die vorige skatting in die rigting van die vorige fout deur 'n breukdeel bedrag 945. is die fout gemaak by tyd t. In die derde weergawe, die voorspelling is 'n eksponensieel geweeg (dit wil sê afslag) bewegende gemiddelde met afslag faktor 1- 945: Die interpolasie weergawe van die voorspelling formule is die eenvoudigste om te gebruik as jy die uitvoering van die model op 'n spreadsheet: dit pas in 'n enkele sel en bevat selverwysings verwys na die vorige skatting, die vorige waarneming, en die sel waar die waarde van 945 gestoor. Let daarop dat indien 945 1, die SES model is gelykstaande aan 'n ewekansige loop model (sonder groei). As 945 0, die SES model is gelykstaande aan die gemiddelde model, met die veronderstelling dat die eerste stryk waarde gelyk aan die gemiddelde is ingestel. (Terug na bo.) Die gemiddelde ouderdom van die data in die eenvoudige eksponensiële-glad voorspelling is 1/945 relatief tot die tydperk waarvoor die voorspelling is bereken. (Dit is nie veronderstel duidelik te wees, maar dit kan maklik aangetoon deur die evaluering van 'n oneindige reeks.) Dus, die eenvoudige bewegende gemiddelde voorspelling is geneig om agter draaipunte met sowat 1/945 periodes. Byvoorbeeld, wanneer 945 0.5 die lag is 2 periodes wanneer 945 0.2 die lag is 5 periodes wanneer 945 0.1 die lag is 10 periodes, en so aan. Vir 'n gegewe gemiddelde ouderdom (bv bedrag van lag), die eenvoudige eksponensiële gladstryking (SES) voorspelling is 'n bietjie beter as die eenvoudige bewegende gemiddelde (SMA) voorspel, want dit plaas relatief meer gewig op die mees onlangse waarneming --i. e. dit is 'n bietjie meer quotresponsivequot om veranderinge voorkom in die onlangse verlede. Byvoorbeeld, 'n SMA model met 9 terme en 'n SES model met 945 0.2 beide het 'n gemiddelde ouderdom van 5 vir die data in hul voorspellings, maar die SES model plaas meer gewig op die laaste 3 waardes as wel die SMA model en by die Terselfdertyd is dit doesn8217t heeltemal 8220forget8221 oor waardes meer as 9 tydperke oud was, soos getoon in hierdie grafiek: nog 'n belangrike voordeel van die SES model die SMA model is dat die SES model maak gebruik van 'smoothing parameter wat voortdurend veranderlike, so dit kan maklik new deur die gebruik van 'n quotsolverquot algoritme om die gemiddelde minimum te beperk kwadraat fout. Die optimale waarde van 945 in die SES model vir hierdie reeks blyk te wees 0,2961, soos hier gewys word: die gemiddelde ouderdom van die data in hierdie voorspelling is 1 / 0,2961 3.4 tydperke, wat soortgelyk is aan dié van 'n 6-termyn eenvoudige bewegende gemiddelde. Die langtermyn-voorspellings van die SES model is 'n horisontale reguit lyn. soos in die SMA model en die ewekansige loop model sonder groei. Let egter daarop dat die vertrouensintervalle bereken deur Stat Graphics nou divergeer in 'n redelike aantreklike mode, en dat hulle aansienlik nouer as die vertrouensintervalle vir die ewekansige loop model. Die SES model veronderstel dat die reeks is 'n bietjie quotmore predictablequot as wel die ewekansige loop model. 'N SES model is eintlik 'n spesiale geval van 'n ARIMA model. sodat die statistiese teorie van ARIMA modelle bied 'n goeie basis vir die berekening van vertrouensintervalle vir die SES model. In die besonder, 'n SES model is 'n ARIMA model met een nonseasonal verskil, 'n MA (1) termyn, en geen konstante term. andersins bekend as 'n quotARIMA (0,1,1) model sonder constantquot. Die MA (1) koëffisiënt in die ARIMA model stem ooreen met die hoeveelheid 1- 945 in die SES model. Byvoorbeeld, as jy 'n ARIMA (0,1,1) model inpas sonder konstante om die reeks te ontleed hier, die beraamde MA (1) koëffisiënt blyk te wees 0,7029, wat byna presies 'n minus 0,2961. Dit is moontlik om die aanname van 'n nie-nul konstante lineêre tendens voeg by 'n SES model. Om dit te doen, net 'n ARIMA model met een nonseasonal verskil en 'n MA (1) termyn met 'n konstante, dit wil sê 'n ARIMA (0,1,1) model met 'n konstante spesifiseer. Die langtermyn-voorspellings sal dan 'n tendens wat gelyk is aan die gemiddelde tendens waargeneem oor die hele skatting tydperk is. Jy kan dit nie doen in samewerking met seisoenale aanpassing, omdat die aanpassing opsies seisoenale is afgeskakel wanneer die model tipe is ingestel op ARIMA. Jy kan egter 'n konstante langtermyn eksponensiële tendens om 'n eenvoudige eksponensiële gladstryking model voeg (met of sonder seisoenale aanpassing) deur gebruik te maak van die opsie inflasie-aanpassing in die vooruitskatting prosedure. Die toepaslike quotinflationquot (persentasie groei) koers per periode kan geskat word as die helling koëffisiënt in 'n lineêre tendens model toegerus om die data in samewerking met 'n natuurlike logaritme transformasie, of dit kan op grond van ander, onafhanklike inligting oor die langtermyn groeivooruitsigte . (Terug na bo.) Browns Lineêre (dws dubbel) Eksponensiële glad die SMA modelle en SES modelle aanvaar dat daar geen tendens van enige aard in die data (wat gewoonlik OK of ten minste nie-te-sleg vir 1- stap-ahead voorspellings wanneer die data is relatief raserig), en hulle kan verander word om 'n konstante lineêre tendens inkorporeer soos hierbo getoon. Wat van kort termyn tendense As 'n reeks vertoon 'n wisselende koers van groei of 'n sikliese patroon wat uitstaan duidelik teen die geraas, en as daar 'n behoefte aan meer as 1 tydperk wat voorlê voorspel, dan skatting van 'n plaaslike tendens kan ook wees n probleem. Die eenvoudige eksponensiële gladstryking model veralgemeen kan word na 'n lineêre eksponensiële gladstryking (LES) model wat plaaslike begrotings van beide vlak en tendens bere te kry. Die eenvoudigste-time wisselende tendens model is Browns lineêr eksponensiële gladstryking model, wat twee verskillende reëlmatige reeks wat op verskillende punte gesentreer in die tyd gebruik. Die vooruitskatting formule is gebaseer op 'n ekstrapolasie van 'n streep deur die twee sentrums. ( 'N meer gesofistikeerde weergawe van hierdie model, Holt8217s, word hieronder bespreek.) Die algebraïese vorm van Brown8217s lineêr eksponensiële gladstryking model, soos dié van die eenvoudige eksponensiële gladstryking model, uitgedruk kan word in 'n aantal verskillende maar ekwivalente vorms. Die quotstandardquot vorm van hierdie model word gewoonlik uitgedruk as volg: Laat S dui die enkel-stryk reeks verkry deur die toepassing van eenvoudige eksponensiële gladstryking om reeks Y. Dit is, is die waarde van S op tydperk t gegee word deur: (Onthou dat, onder eenvoudige eksponensiële gladstryking, dit sou die voorspelling vir Y by tydperk T1 wees) Dan Squot dui die dubbel-stryk reeks verkry deur die toepassing van eenvoudige eksponensiële gladstryking (met behulp van dieselfde 945) tot reeks S:. ten slotte, die voorspelling vir Y tk. vir enige kgt1, word gegee deur: Dit lewer e 1 0 (dit wil sê kul n bietjie, en laat die eerste skatting gelyk wees aan die werklike eerste waarneming), en e 2 Y 2 8211 Y 1. waarna voorspellings gegenereer met behulp van die vergelyking hierbo. Dit gee dieselfde toegerus waardes as die formule gebaseer op S en S indien laasgenoemde is begin met behulp van S 1 S 1 Y 1. Hierdie weergawe van die model gebruik word op die volgende bladsy wat 'n kombinasie van eksponensiële gladstryking met seisoenale aanpassing illustreer. Holt8217s Lineêre Eksponensiële Smoothing Brown8217s LES model bere plaaslike begrotings van vlak en tendens deur glad die onlangse data, maar die feit dat dit nie so met 'n enkele glad parameter plaas 'n beperking op die data patrone wat dit in staat is om aan te pas: die vlak en tendens word nie toegelaat om wissel op onafhanklike tariewe. Holt8217s LES model spreek hierdie kwessie deur die insluiting van twee glad konstantes, een vir die vlak en een vir die tendens. Te eniger tyd t, soos in Brown8217s model, die daar is 'n skatting L t van die plaaslike vlak en 'n skatting T t van die plaaslike tendens. Hier is hulle rekursief bereken vanaf die waarde van Y op tydstip t en die vorige raming van die vlak en tendens waargeneem deur twee vergelykings wat eksponensiële gladstryking afsonderlik van toepassing op hulle. As die geskatte vlak en tendens op tydstip t-1 is L t82091 en T t-1. onderskeidelik, dan is die voorspelling vir Y tshy wat op tydstip t-1 sal gemaak is gelyk aan L t-1 T T-1. Wanneer die werklike waarde is waargeneem, is die opgedateer skatting van die vlak rekursief bereken deur interpol tussen Y tshy en sy voorspelling, L t-1 T T-1, die gebruik van gewigte van 945 en 1- 945. Die verandering in die geskatte vlak, naamlik L t 8209 L t82091. geïnterpreteer kan word as 'n lawaaierige meting van die tendens op tydstip t. Die opgedateer skatting van die tendens is dan rekursief bereken deur interpol tussen L t 8209 L t82091 en die vorige skatting van die tendens, T t-1. die gebruik van gewigte van 946 en 1-946: Die interpretasie van die tendens-glad konstante 946 is soortgelyk aan dié van die vlak glad konstante 945. Models met klein waardes van 946 aanvaar dat die tendens verander net baie stadig met verloop van tyd, terwyl modelle met groter 946 aanvaar dat dit vinniger is om te verander. 'N Model met 'n groot 946 is van mening dat die verre toekoms is baie onseker, omdat foute in die tendens-skatting word baie belangrik wanneer voorspel meer as een tydperk wat voorlê. (Terug na bo.) Die smoothing konstantes 945 en 946 kan in die gewone manier word beraam deur die vermindering van die gemiddelde kwadraat fout van die 1-stap-ahead voorspellings. Wanneer dit in Stat Graphics gedoen, die skattings uitdraai om te wees 945 0.3048 en 946 0,008. Die baie klein waarde van 946 beteken dat die model veronderstel baie min verandering in die tendens van een tydperk na die volgende, so basies hierdie model is besig om 'n langtermyn-tendens skat. Volgens analogie met die idee van die gemiddelde ouderdom van die data wat gebruik word in die skatte van die plaaslike vlak van die reeks, die gemiddelde ouderdom van die data wat gebruik word in die skatte van die plaaslike tendens is eweredig aan 1/946, hoewel nie presies gelyk aan Dit. In hierdie geval is dit blyk 1 / 0,006 125. Dit isn8217t n baie presiese aantal sover die akkuraatheid van die skatting van 946 isn8217t regtig 3 desimale plekke te wees, maar dit is van dieselfde algemene orde van grootte as die steekproefgrootte van 100 , so hierdie model is gemiddeld oor 'n hele klomp van die geskiedenis in die skatte van die tendens. Die voorspelling plot hieronder toon dat die LES model skat 'n effens groter plaaslike tendens aan die einde van die reeks as die konstante tendens geskat in die SEStrend model. Ook waarvan die beraamde waarde van 945 is byna identies aan die een wat deur die pas van die SES model met of sonder tendens, so dit is amper dieselfde model. Nou, doen hierdie lyk redelike voorspellings vir 'n model wat veronderstel is om te beraming 'n plaaslike tendens As jy hierdie plot 8220eyeball8221, dit lyk asof die plaaslike tendens afwaarts gedraai aan die einde van die reeks: Wat het die parameters van hierdie model gebeur is beraam deur die vermindering van die kwadraat fout van 1-stap-ahead voorspellings, nie langer termyn voorspellings, in welke geval die tendens 'n groot verskil doesn8217t maak. As alles wat jy is op soek na is 1-stap-ahead foute, is jy nie sien die groter prentjie van tendense oor (sê) 10 of 20 periodes. Ten einde hierdie model meer in harmonie te kry met ons oogbal ekstrapolasie van die data, kan ons met die hand die tendens-glad konstante pas sodat dit 'n korter basislyn vir tendens skatting. Byvoorbeeld, as ons kies om te stel 946 0.1, dan is die gemiddelde ouderdom van die gebruik in die skatte van die plaaslike tendens data is 10 periodes, wat beteken dat ons die gemiddeld van die tendens oor daardie laaste 20 periodes of so. Here8217s wat die voorspelling plot lyk asof ons '946 0.1 terwyl 945 0.3. Dit lyk intuïtief redelike vir hierdie reeks, maar dit is waarskynlik gevaarlik om hierdie tendens te ekstrapoleer nie meer as 10 periodes in die toekoms. Wat van die fout statistieke Hier is 'n model vergelyking vir die twee modelle hierbo asook drie SES modelle getoon. Die optimale waarde van 945.Vir die SES model is ongeveer 0,3, maar soortgelyke resultate (met 'n bietjie meer of minder 'n responsiewe ingesteldheid, onderskeidelik) verkry met 0,5 en 0,2. (A) Holts lineêre exp. glad met alfa 0,3048 en beta 0,008 (B) Holts lineêre exp. glad met alfa 0,3 en beta 0,1 (C) Eenvoudige eksponensiële gladstryking met alfa 0,5 (D) Eenvoudige eksponensiële gladstryking met alfa 0,3 (E) Eenvoudige eksponensiële gladstryking met alfa 0,2 hul statistieke is byna identies, so ons can8217t regtig die keuse te maak op die basis van 1-stap-ahead voorspelling foute binne die data monster. Ons het om terug te val op ander oorwegings. As ons glo dat dit sinvol om die huidige tendens skatting van wat die afgelope 20 periodes of so gebeur baseer, kan ons 'n saak vir die LES model met 945 0.3 en 946 0.1 maak. As ons wil hê agnostikus te wees oor die vraag of daar 'n plaaslike tendens, dan een van die SES modelle makliker om te verduidelik kan wees en sou ook vir meer middel-of-the-road voorspellings vir die volgende 5 of 10 periodes. (Terug na bo.) Watter tipe tendens-ekstrapolasie die beste: horisontale of lineêre empiriese bewyse dui daarop dat, indien die data is reeds aangepas (indien nodig) vir inflasie, dan is dit dalk onverstandig om kort termyn lineêre ekstrapoleer wees tendense baie ver in die toekoms. Tendense duidelik vandag mag verslap in die toekoms as gevolg van uiteenlopende oorsake soos produk veroudering, toenemende mededinging en sikliese afswaai of opwaartse fases in 'n bedryf. Om hierdie rede, eenvoudige eksponensiële gladstryking voer dikwels beter out-of-monster as wat dit andersins word verwag, ten spyte van sy quotnaivequot horisontale tendens ekstrapolasie. Gedempte tendens veranderinge van die lineêre eksponensiële gladstryking model word ook dikwels gebruik in die praktyk om 'n aantekening van konserwatisme in te voer in die tendens projeksies. Die gedempte-tendens LES model geïmplementeer kan word as 'n spesiale geval van 'n ARIMA model, in die besonder, 'n ARIMA (1,1,2) model. Dit is moontlik om vertrouensintervalle rondom langtermyn voorspellings wat deur eksponensiële gladstryking modelle bereken deur die oorweging van hulle as spesiale gevalle van ARIMA modelle. (Pasop: nie alle sagteware bereken vertrouensintervalle vir hierdie modelle korrek.) Die breedte van die vertrouensintervalle hang af van (i) die RMS fout van die model, (ii) die tipe glad (eenvoudige of lineêr) (iii) die waarde (s) van die smoothing konstante (s) en (iv) die aantal periodes voor jy voorspel. In die algemeen, die tussenposes versprei vinniger as 945 kry groter in die SES model en hulle uitgebrei, sodat baie vinniger as lineêre, eerder as eenvoudige smoothing gebruik. Hierdie onderwerp word verder in die ARIMA modelle deel van die notas bespreek. (Terug na bo.)
No comments:
Post a Comment